Note

COMPUTER-DETERMINED KINETIC PARAMETERS FROM TG CURVES. PART XVI

LEO REICH and S.S. STIVALA

Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (U.S.A.)

(Received 3 February 1986)

In a previous communication [1], expressions were developed which were utilized to analyze data from non-isothermal TG (NITG) curves, at relatively low conversions, for activation energy (E) . Such an analysis led to the estimation of E alone, virtually independent of reaction order (n) values. In this paper, expressions have been developed with the same goal in mind, to determine values of *E* irrespective of the n-values. To this end, rational approximations and an iterative computer procedure were employed.

THEORY

It was previously reported $[2-4]$ that the integral of the Arrhenius function could be satisfactorily represented by rational expressions such as,

$$
T \exp(-x) \frac{(x^2 + 10x + 18)}{(x^3 + 12x^2 + 36x + 24)}
$$
 (1)

$$
T \exp(-x) \frac{(x^3 + 18x^2 + 88x + 96)}{(x^4 + 20x^3 + 120x^2 + 240x + 120)}
$$
 (2)

as well as the equation which was derived using integration by parts,
\n
$$
T \exp(-x) \frac{1}{x} \left[1 - \frac{2!}{x} + \frac{3!}{x^2} + \dots + \frac{(-1)^N (N+1)!}{x^N} \right], N = 2
$$
\n(3)

where $x = E/RT$. The suitability of eqns. (1)-(3) as well as of other expressions for the estimation of E and n has been reported [2,3]. By employing any of eqns. (1)-(3), we may readily write for an *n*-type unimolecular or pseudo-unimolecular decomposition by means of NITG, at relatively low conversions [l]

$$
\ln\left[\frac{(\alpha/T)}{(RA)}\right] = -\frac{E}{RT} + \ln\left(\frac{A}{\beta}\right)
$$
 (4)

where $A =$ pre-exponential factor, β = constant heating rate, and α = degree

of conversion. The term RA can denote any of the moieties in eqns. (1)–(3) which follow the term $T \exp(-x)$.

RESULTS AND DISCUSSION

A computer program was devised which allowed the determination of E/R from eqn. (4) by means of iteration. Since values of x are invariably larger than 5, an initial value of $x = 5$ was arbitrarily assumed. Using a least squares treatment (LSQ), where the left-hand side of eqn. (4) was the dependent variable and the independent variable $-1/T$, $\alpha-T$ data provided an initial value of E/R . This value of E/R was then used in the RA-term so that another value of E/R could be obtained by means of LSQ. This iterative procedure was rapid and continued until the absolute value of the difference between a value of E/R and its previous value divided by the value of E/R was less than 0.0001. When this limiting condition was met, the value of E/R was considered to be the proper value (generally, less than 4 iterations were required). Along with E/R , a correlation coefficient (CR) was obtained. The preceding method was applied to low conversion data for octamethylcyclotetrasiloxane (OMCS) [5], teflon [5], magnesium hydroxide [6], as well as theoretical data [7].

In the case of OMCS, 5 pairs of α -T data were used where α varied from 0.005 to 0.106. A value of $E = 10.3$ kcal mol⁻¹ was obtained along with $CR = 0.9955$ (lit. [5,8], $E = 11.7$ and 12.7 ± 1.5). For teflon, 5 pairs of data afforded values of $E = 65.1$ kcal mol⁻¹, $CR = 0.9997$ (lit. [5], $E = 66-68$ kcal mol^{-1}). The procedure was also applied to NITG data for magnesium hydroxide to test the effect of an apparent high value of n , ca. 1.5. For 7 α -values ranging from 0.03 to 0.12 (trace 1), $E = 58.4$ kcal mol⁻¹ and $CR = 0.9967$ (lit. [2,3,6,8-11], $E = 53-57$ kcal mol⁻¹). Finally, employing 12 pairs of theoretical $\alpha - T$ data where α ranged from 0.007 to 0.1001, $E = 29.8$ and CR = 0.9999 (lit. [7], $E = 30$ kcal mol⁻¹). From the preceding, it can be seen that the method employed was rapid and provided reasonably satisfactory values of E even though *n*-values ranged from ca. 0.3 to 1.5.

REFERENCES

- 1 L. Reich, L.Z. Pollara and S.S. Stivala, Thermochim. Acta, 90 (1985) 189.
- **2 L. Reich and S.S. Stivala, Thermochim. Acta, 52 (1982) 337.**
- **3 L. Reich and S.S. Stivala, Thermcchim. Acta, 53 (1982) 121.**
- **4 G.I. Senum and R.T. Yang, J. Therm. Anal., 11 (1977) 445.**
- **5 C.D. Doyle, J. Appl. Polym. Sci., 5 (1961) 285.**
- **6 P.H. Fong and D.T.Y. Chen, Thermocim. Acta, 18 (1977) 273.**
- **7 K. Bohme, S. Boy, K. Heide and W. Holand, Thermochim. Acta, 23 (1978) 17.**
- **8 L. Reich and S.S. Stivala, Thermochim. Acta, 41 (1980) 391.**
- **9 L. Reich and S.S. Stivala, Thermochim. Acta, 24 (1978) 9.**
- **10 L. Reich and S.S. Stivala, Thermochim. Acta, 36 (1980) 103.**
- **11 L. Reich and S.S. Stivala, Thermochim. Acta, 87 (1985) 349.**